2022高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù)與基本初等函數(shù) 第4課時 函數(shù)的奇偶性與周期性練習(xí) 理

上傳人:xt****7 文檔編號:105703411 上傳時間:2022-06-12 格式:DOC 頁數(shù):8 大?。?4KB
收藏 版權(quán)申訴 舉報 下載
2022高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù)與基本初等函數(shù) 第4課時 函數(shù)的奇偶性與周期性練習(xí) 理_第1頁
第1頁 / 共8頁
2022高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù)與基本初等函數(shù) 第4課時 函數(shù)的奇偶性與周期性練習(xí) 理_第2頁
第2頁 / 共8頁
2022高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù)與基本初等函數(shù) 第4課時 函數(shù)的奇偶性與周期性練習(xí) 理_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù)與基本初等函數(shù) 第4課時 函數(shù)的奇偶性與周期性練習(xí) 理》由會員分享,可在線閱讀,更多相關(guān)《2022高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù)與基本初等函數(shù) 第4課時 函數(shù)的奇偶性與周期性練習(xí) 理(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù)與基本初等函數(shù) 第4課時 函數(shù)的奇偶性與周期性練習(xí) 理 1.函數(shù)f(x)=x+(x≠0)是(  ) A.奇函數(shù),且在(0,3)上是增函數(shù) B.奇函數(shù),且在(0,3)上是減函數(shù) C.偶函數(shù),且在(0,3)上是增函數(shù) D.偶函數(shù),且在(0,3)上是減函數(shù) 答案 B 解析 因?yàn)閒(-x)=-x+=-(x+)=-f(x),所以函數(shù)f(x)=x+為奇函數(shù).當(dāng)x1,x2∈(0,3)(x10,x1x2<9,所以(x1-x2)>0,所以f(x1)>f(x2),所

2、以函數(shù)f(x)在(0,3)上是減函數(shù),故選B. 2.(2018·黑龍江大慶模擬)下列函數(shù)中,在(0,+∞)上單調(diào)遞減,并且是偶函數(shù)的是(  ) A.y=x2        B.y=-x3 C.y=-ln|x| D.y=2x 答案 C 解析 A項,y=x2是偶函數(shù),在(0,+∞)上單調(diào)遞增,不合題意;B項,y=-x3是奇函數(shù),不合題意;C項,y=-ln|x|是偶函數(shù),在(0,+∞)上單調(diào)遞減,符合題意;D項,y=2x不是偶函數(shù),不合題意.故選C. 3.若函數(shù)f(x)=ax2+bx+8(a≠0)是偶函數(shù),則g(x)=2ax3+bx2+9x是(  ) A.奇函數(shù) B.偶函數(shù)

3、C.非奇非偶函數(shù) D.既奇又偶函數(shù) 答案 A 解析 由于f(x)=ax2+bx+8(a≠0)是偶函數(shù),所以b=0,所以g(x)=2ax3+9x(a≠0),所以g(-x)=2a(-x)3+9(-x)=-(2ax3+9x)=-g(x),所以g(x)=2ax3+9x是奇函數(shù).故選A. 4.(2015·陜西)設(shè)f(x)=x-sinx,則f(x)(  ) A.既是奇函數(shù)又是減函數(shù) B.既是奇函數(shù)又是增函數(shù) C.是有零點(diǎn)的減函數(shù) D.是沒有零點(diǎn)的奇函數(shù) 答案 B 解析 易得f(x)是奇函數(shù),由f′(x)=1-cosx≥0恒成立,可知f(x)是增函數(shù),故選B. 5.函數(shù)f(x)是定義域?yàn)?/p>

4、R的偶函數(shù),又是以2為周期的周期函數(shù),若f(x)在[-1,0]上是減函數(shù),則f(x)在[2,3]上是(  ) A.增函數(shù) B.減函數(shù) C.先增后減的函數(shù) D.先減后增的函數(shù) 答案 A 6.(2018·山東臨沭一中月考)已知定義在R上的函數(shù)f(x)的滿足f(-x)=-f(x),f(3-x)=f(x),則f(2 019)=(  ) A.-3 B.0 C.1 D.3 答案 B 解析 用-x換x,可將f(x+3)=f(-x)=-f(x), ∴T=6,∴f(2 019)=f(336×6+3)=f(3). ∵f(3-x)=f(x),∴f(3)=f(0)=0. 7.(2

5、017·課標(biāo)全國Ⅰ)函數(shù)f(x)在(-∞,+∞)上單調(diào)遞減,且為奇函數(shù).若f(1)=-1,則滿足-1≤f(x-2)≤1的x的取值范圍是(  ) A.[-2,2] B.[-1,1] C.[0,4] D.[1,3] 答案 D 解析 ∵f(x)為奇函數(shù),∴f(-1)=-f(1)=1.于是-1≤f(x-2)≤1等價于f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)上單調(diào)遞減,∴-1≤x-2≤1,∴1≤x≤3.故選D. 8.若定義在R上的奇函數(shù)f(x)滿足對任意的x∈R,都有f(x+2)=-f(x)成立,且f(1)=8,則f(2 015),f(2 016),f(2 017

6、)的大小關(guān)系是(  ) A.f(2 015)f(2 016)>f(2 017) C.f(2 016)>f(2 015)>f(2 017) D.f(2 016)

7、(2 017)=f(4×504+1)=f(1)=8,即f(2 015)

8、=1-e.故選A. 10.設(shè)函數(shù)y=f(x)(x∈R)為偶函數(shù),且?x∈R,滿足f(x-)=f(x+),當(dāng)x∈[2,3]時,f(x)=x,則當(dāng)x∈[-2,0]時,f(x)等于(  ) A.|x+4| B.|2-x| C.2+|x+1| D.3-|x+1| 答案 D 解析 因?yàn)?x∈R,滿足f(x-)=f(x+), 所以?x∈R,滿足f(x+-)=f(x++), 即f(x)=f(x+2). 若x∈[0,1]時,則x+2∈[2,3],f(x)=f(x+2)=x+2, 若x∈[-1,0],則-x∈[0,1]. 因?yàn)楹瘮?shù)y=f(x)(x∈R)為偶函數(shù),所以f(-x)=-x+

9、2=f(x),即f(x)=-x+2. 若x∈[-2,-1],則x+2∈[0,1],則f(x)=f(x+2)=x+2+2=x+4. 綜上f(x)=故選D. 11.(2018·安徽合肥一模)已知函數(shù)f(x)=(x2-2x)·sin(x-1)+x+1在[-1,3]上的最大值為M,最小值為m,則M+m=(  ) A.4 B.2 C.1 D.0 答案 A 解析 設(shè)t=x-1,則f(x)=(x2-2x)sin(x-1)+x+1=(t2-1)sint+t+2,t∈[-2,2].記g(t)=(t2-1)sint+t+2,則函數(shù)y=g(t)-2=(t2-1)sint+t是奇函數(shù).由已知得y

10、=g(t)-2的最大值為M-2,最小值為m-2,所以M-2+(m-2)=0,即M+m=4.故選A. 12.如果函數(shù)g(x)=是奇函數(shù),那么f(x)=________. 答案 2x+3 解析 令x<0,所以-x>0,g(-x)=-2x-3.因?yàn)間(x)是奇函數(shù),所以g(x)=-g(-x)=2x+3, 所以f(x)=2x+3. 13.已知y=f(x)+x2是奇函數(shù),且f(1)=1.若g(x)=f(x)+2,則g(-1)=________. 答案?。? 解析 令H(x)=f(x)+x2,則H(1)+H(-1)=f(-1)+1+f(1)+1=0,∴f(-1)=-3,∴g(-1)=f(-1

11、)+2=-1. 14.已知函數(shù)f(x)=x3+x,對任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,則x的取值范圍為________. 答案 (-2,) 解析 易知原函數(shù)在R上單調(diào)遞增,且為奇函數(shù),故f(mx-2)+f(x)<0?f(mx-2)<-f(x)=f(-x),此時應(yīng)有mx-2<-x?mx+x-2<0對所有m∈[-2,2]恒成立. 令g(m)=xm+x-2,此時只需即可, 解得-2

12、解析 ∵f(-x)=-f(x),∴不等式x[f(x)-f(-x)]<0可化簡為xf(x)<0,又f(1)=0,∴f(-1)=0,∵奇函數(shù)f(x)在(0,+∞)上是增函數(shù),從而函數(shù)f(x)的大致圖像如圖所示,則不等式x[f(x)-f(-x)]<0的解集為{x|-1

13、)<0? f(x)<-f(x-)=f(-x)? ?-<x<. ∴不等式f(x)+f(x-)<0的解集為{x|-<x<}. 17.已知函數(shù)f(x)是(-∞,+∞)上的偶函數(shù),若對于x≥0,都有f(x+2)=-f(x),且當(dāng)x∈[0,2)時,f(x)=log2(x+1),求: (1)f(0)與f(2)的值; (2)f(3)的值; (3)f(2 013)+f(-2 014)的值. 答案 (1)f(0)=0,f(2)=0 (2)f(3)=-1 (3)1 解析 (2)f(3)=f(1+2)=-f(1)=-log2(1+1)=-1. (3)依題意得,x≥0時,f(x+4)=-f(x+2

14、)=f(x),即x≥0時,f(x)是以4為周期的函數(shù). 因此,f(2 013)+f(-2 014)=f(2 013)+f(2 014)=f(1)+f(2).而f(2)=-f(0)=-log2(0+1)=0,f(1)=log2(1+1)=1,故f(2 013)+f(-2 014)=1. 18.已知函數(shù)f(x)=是奇函數(shù). (1)求實(shí)數(shù)m的值; (2)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍. 答案 (1)m=2 (2)(1,3] 解析 (1)設(shè)x<0,則-x>0, 所以f(-x)=-(-x)2+2(-x)=-x2-2x. 又因?yàn)閒(x)為奇函數(shù),所以f(

15、-x)=-f(x), 于是x<0時,f(x)=x2+2x=x2+mx, 所以m=2. (2)要使f(x)在[-1,a-2]上單調(diào)遞增, 結(jié)合f(x)的圖像知 所以1

16、-1],得到f(-m)=-(2-1)+1=0. 2.(2017·安徽蚌埠質(zhì)檢)函數(shù)y=f(x)是R上的奇函數(shù),滿足f(3+x)=f(3-x),當(dāng)x∈(0,3)時,f(x)=2x,當(dāng)x∈(-6,-3)時,f(x)等于(  ) A.2x+6 B.-2x-6 C.2x-6 D.-2x+6 答案 D 解析 由函數(shù)f(x)是奇函數(shù),得f(-x)=-f(x),當(dāng)x∈(-6,-3)時,x+6∈(0,3),由f(3+x)=f(3-x),得f(x)=-f(-x)=-f[3-(3+x)]=-f[3+(3+x)]=-f(6+x)=-26+x. 3.[x]表示不超過x的最大整數(shù),已知函數(shù)f(x)=

17、|x|-[x],有下列結(jié)論: ①f(x)的定義域?yàn)镽;②f(x)的值域?yàn)閇0,1];③f(x)是偶函數(shù);④f(x)不是周期函數(shù);⑤f(x)的單調(diào)增區(qū)間為(k,k+1)(k∈N). 其中正確的個數(shù)是(  ) A.3 B.2 C.1 D.0 答案 A 解析 顯然①正確.x=-2.1時,f(-2.1)=2.1-(-3)=5.1.②錯誤;f(x)圖像關(guān)于y軸不對稱,③錯誤;f(x)在x>0上是周期變化,在x<0上不是周期變化,④正確;k∈N,則在(k,k+1)(k∈N)上f(x)=x-[x],因?yàn)楫?dāng)x>0時x-[x]表示x的小數(shù)部分,所以f(x)在(k,k+1)(k∈N)上單調(diào)遞增

18、,當(dāng)x<0時,f(x)=-x-[x],y=-x是減函數(shù),y=-[x]也是減函數(shù),故f(x)的單調(diào)增區(qū)間只有(k,k+1)(k∈N),⑤正確.故①④⑤正確,故選A. 4.設(shè)f(x)是定義在R上的周期為3的周期函數(shù),如圖表示該函數(shù)在區(qū)間(-2,1]上的圖像,則f(2 013)+f(2 014)=(  ) A.3 B.2 C.1 D.0 答案 C 解析 f(2 013)=f(3×671)=f(0)=0,f(2 014)=f(3×671+1)=f(1)=1,所以f(2 013)+f(2 014)=1. 5.(2017·湖北黃岡調(diào)研)定義在R上的函數(shù)f(x)滿足f(-x)+f(x)=

19、0,f(x+4)=f(x),且x∈(-2,0)時,f(x)=2x+,則f(log220)=(  ) A.1 B. C.-1 D.- 答案 C 解析 ∵f(-x)+f(x)=0,即f(-x)=-f(x), ∴定義在R上的函數(shù)f(x)是奇函數(shù). ∵4=log216

20、sinx B.y=x2cosx C.y=|lnx| D.y=2-x 答案 B 解析 A中函數(shù)為奇函數(shù),B中函數(shù)為偶函數(shù),C與D中函數(shù)均為非奇非偶函數(shù),故選B. 7.已知定義在R上的函數(shù)f(x),對任意的x1,x2∈R都有f(x1+x2)-f(x1)=f(x2)+5,則下列命題正確的是(  ) A.f(x)是奇函數(shù) B.f(x)是偶函數(shù) C.f(x)+5是奇函數(shù) D.f(x)+5是偶函數(shù) 答案 C 解析 取x1=x2=0,得f(0+0)-f(0)=f(0)+5,所以f(0)=-5,令x1=x,x2=-x,則f[x+(-x)]-f(x)=f(-x)+5,所以f(0)

21、-f(x)=f(-x)+5,所以f(-x)+5=-[f(x)+5],所以函數(shù)f(x)+5是奇函數(shù),故選C. 8.(2017·唐山一中月考)f(x)是定義在R上的奇函數(shù),滿足f(x+1)=,當(dāng)x∈(0,1)時,f(x)=2x-2,則f(log6)=________. 答案  解析 ∵f(x+1)=,∴f(x)=f(x+2). f(log6)=-f(-log6)=-f(log26)=-f(log26-2)=-(2log26-2-2)=-(-2)=. 9.設(shè)f(x)是定義在R上且周期為2的函數(shù),在區(qū)間[-1,1)上,f(x)=其中a∈R.若f(-)=f(),則f(5a)的值是______

22、__. 答案 - 解析 由題意可得f(-)=f(-)=-+a,f()=f()=|-|=,則-+a=,a=,故f(5a)=f(3)=f(-1)=-1+=-. 10.定義在(-∞,+∞)上的函數(shù)y=f(x)在(-∞,2)上是增函數(shù),且函數(shù)y=f(x+2)為偶函數(shù),則f(-1),f(4),f(5)的大小關(guān)系是__________. 答案 f(5)0時,f(x)≤8. ∵f(x),g(x)都是奇函數(shù),且當(dāng)x<0時,-x>0. ∴F(-x)=af(-x)+bg(-x)+2=-af(x)-bg(x)+2=-[af(x)+bg(x)+2]+4≤8. ∴af(x)+bg(x)+2≥-4. ∴f(x)=af(x)+bg(x)+2在(-∞,0)上有最小值-4.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!