(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 函數(shù)與導(dǎo)數(shù) 第2講 函數(shù)與方程學(xué)案

上傳人:彩*** 文檔編號(hào):105584935 上傳時(shí)間:2022-06-12 格式:DOC 頁數(shù):15 大?。?70KB
收藏 版權(quán)申訴 舉報(bào) 下載
(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 函數(shù)與導(dǎo)數(shù) 第2講 函數(shù)與方程學(xué)案_第1頁
第1頁 / 共15頁
(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 函數(shù)與導(dǎo)數(shù) 第2講 函數(shù)與方程學(xué)案_第2頁
第2頁 / 共15頁
(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 函數(shù)與導(dǎo)數(shù) 第2講 函數(shù)與方程學(xué)案_第3頁
第3頁 / 共15頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 函數(shù)與導(dǎo)數(shù) 第2講 函數(shù)與方程學(xué)案》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 函數(shù)與導(dǎo)數(shù) 第2講 函數(shù)與方程學(xué)案(15頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 第2講 函數(shù)與方程 [考情考向分析] 求函數(shù)零點(diǎn)所在區(qū)間、零點(diǎn)個(gè)數(shù)及參數(shù)的取值范圍是高考的常見題型,主要以選擇題、填空題的形式出現(xiàn). 熱點(diǎn)一 函數(shù)的零點(diǎn) 1.零點(diǎn)存在性定理 如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b)使得f(c)=0,這個(gè)c也就是方程f(x)=0的根. 2.函數(shù)的零點(diǎn)與方程根的關(guān)系 函數(shù)F(x)=f(x)-g(x)的零點(diǎn)就是方程f(x)=g(x)的根,即函數(shù)y=f(x)的圖象與函數(shù)y=g(x)的圖象交點(diǎn)的橫坐標(biāo). 例1 (1)已知f(x)

2、=+x-,則y=f(x)的零點(diǎn)個(gè)數(shù)是(  ) A.4 B.3 C.2 D.1 答案 C 解析 令+x-=0,化簡得2|x|=2-x2,畫出y1=2|x|,y2=2-x2的圖象,由圖可知,圖象有兩個(gè)交點(diǎn),即函數(shù)f(x)有兩個(gè)零點(diǎn). (2)關(guān)于x的方程(x2-2x)2e2x-(t+1)(x2-2x)ex-4=0(t∈R)的不等實(shí)根的個(gè)數(shù)為(  ) A.1 B.3 C.5 D.1或5 答案 B 解析 設(shè)f(x)=(x2-2x)ex,則f′(x)=(x+)(x-)ex,所以函數(shù)f(x)在(-∞,-),(,+∞)上單調(diào)遞增,在(-,)上單調(diào)遞減,且當(dāng)x→-∞時(shí),f(x)→0

3、,f(-)=(2+2) f(0)=0,f()=(2-2)當(dāng)x→+∞,f(x)→+∞,由此畫出函數(shù)y=f(x)的草圖,如圖所示. 關(guān)于x的方程(x2-2x)2e2x-(t+1)(x2-2x)ex-4=0, 令u=f(x),則u2-(t+1)u-4=0,Δ=(t+1)2+16>0,故有兩個(gè)不同的解u1,u2, 又u1u2=f(-)f()=-4, 所以不等實(shí)根的個(gè)數(shù)為3. 思維升華 函數(shù)零點(diǎn)(即方程的根)的確定問題,常見的有 (1)函數(shù)零點(diǎn)大致存在區(qū)間的確定. (2)零點(diǎn)個(gè)數(shù)的確定. (3)兩函數(shù)圖象交點(diǎn)的橫坐標(biāo)或有幾個(gè)交點(diǎn)的確定. 解決這類問題的常用方法有解方程法、利用零點(diǎn)

4、存在的判定或數(shù)形結(jié)合法,尤其是方程兩端對應(yīng)的函數(shù)類型不同的方程多以數(shù)形結(jié)合法求解. 跟蹤演練1 (1)定義在R上的函數(shù)f(x),滿足f(x)=且f(x+1)=f(x-1),若g(x)=3-log2x,則函數(shù)F(x)=f(x)-g(x)在(0,+∞)內(nèi)的零點(diǎn)有(  ) A.3個(gè) B.2個(gè) C.1個(gè) D.0個(gè) 答案 B 解析 由f(x+1)=f(x-1)得f(x)的周期為2,作函數(shù)f(x)和g(x)的圖象, 圖中,g(3)=3-log23>1=f(3), g(5)=3-log25<1=f(5), 可得有兩個(gè)交點(diǎn),所以選B. (2)已知函數(shù)f(x)滿足:①定義域?yàn)镽;②?x

5、∈R,都有f(x+2)=f(x);③當(dāng)x∈[-1,1]時(shí),f(x)=-|x|+1,則方程f(x)=log2|x|在區(qū)間[-3,5]內(nèi)解的個(gè)數(shù)是(  ) A.5 B.6 C.7 D.8 答案 A 解析 畫出函數(shù)圖象如圖所示,由圖可知,共有5個(gè)解. 熱點(diǎn)二 函數(shù)的零點(diǎn)與參數(shù)的范圍 解決由函數(shù)零點(diǎn)的存在情況求參數(shù)的值或取值范圍問題,關(guān)鍵是利用函數(shù)與方程思想或數(shù)形結(jié)合思想,構(gòu)建關(guān)于參數(shù)的方程或不等式求解. 例2 (1)(2018·浙江省重點(diǎn)中學(xué)聯(lián)考)已知a∈R,函數(shù)f(x)=若存在三個(gè)互不相等的實(shí)數(shù)x1,x2,x3,使得===-e成立,則a的取值范圍是________. 答案 

6、(-∞,-2) 解析?。剑剑剑璭成立,等價(jià)于方程f(x)=-ex有三個(gè)互不相等的實(shí)數(shù)根x1,x2,x3,即函數(shù)y=f(x)的圖象與直線y=-ex有三個(gè)不同的交點(diǎn),易知直線y=-ex與y=e-x的圖象相切,已有一個(gè)交點(diǎn),只需直線y=-ex與曲線y=a+(x>0)有兩個(gè)不同的交點(diǎn)即可,由-ex=a+,得ex2+ax+1=0,∴Δ=a2-4e>0,解得a>2或a<-2,又方程的兩個(gè)根之和為正數(shù),故->0,∴a<0.綜上所述,a<-2. (2)(2018·全國Ⅰ)已知函數(shù)f(x)=g(x)=f(x)+x+a.若g(x)存在2個(gè)零點(diǎn),則a的取值范圍是(  ) A.[-1,0) B.[0,+∞)

7、 C.[-1,+∞) D.[1,+∞) 答案 C 解析 令h(x)=-x-a, 則g(x)=f(x)-h(huán)(x). 在同一坐標(biāo)系中畫出y=f(x),y=h(x)圖象的示意圖,如圖所示. 若g(x)存在2個(gè)零點(diǎn),則y=f(x)的圖象與y=h(x)的圖象有2個(gè)交點(diǎn),平移y=h(x)的圖象可知,當(dāng)直線y=-x-a過點(diǎn)(0,1)時(shí),有2個(gè)交點(diǎn), 此時(shí)1=-0-a,a=-1. 當(dāng)y=-x-a在y=-x+1上方,即a<-1時(shí),僅有1個(gè)交點(diǎn),不符合題意; 當(dāng)y=-x-a在y=-x+1下方,即a>-1時(shí),有2個(gè)交點(diǎn),符合題意. 綜上,a的取值范圍為[-1,+∞). 故選C. 思維

8、升華 (1)方程f(x)=g(x)根的個(gè)數(shù)即為函數(shù)y=f(x)和y=g(x)圖象交點(diǎn)的個(gè)數(shù). (2)關(guān)于x的方程f(x)-m=0有解,m的范圍就是函數(shù)y=f(x)的值域. 跟蹤演練2 (1)已知函數(shù)f(x)=(a∈R),若函數(shù)f(x)在R上有兩個(gè)零點(diǎn),則a的取值范圍是(  ) A.(0,1] B.[1,+∞) C.(0,1)∪(1,2) D.(-∞,1) 答案 A 解析 ∵函數(shù)f(x)=(a∈R)在R上有兩個(gè)零點(diǎn),且x=是函數(shù)f(x)的一個(gè)零點(diǎn), ∴方程2x-a=0在(-∞,0]上有一個(gè)解, 再根據(jù)當(dāng)x∈(-∞,0]時(shí),0<2x≤20=1,可得0

9、 (2)函數(shù)f(x)=,方程[f(x)]2-(m+1)f(x)+1-m=0有4個(gè)不相等實(shí)根,則m的取值范圍是(  ) A. B. C. D. 答案 C 解析 根據(jù)題意畫出函數(shù)f(x)的圖象. 當(dāng)x>0時(shí),f(x)=,則f′(x)=(x>0), 故f(1)=為f(x)在(0,+∞)上的最大值. 設(shè)t=f(x),t2-(m+1)t+1-m=0 有兩個(gè)根t1,t2, 由圖可知,對應(yīng)兩個(gè)x值的t值只有一個(gè), 故可設(shè)t1對應(yīng)一個(gè)x值,t2對應(yīng)3個(gè)x值. 情況為或 當(dāng)屬于第一種情況時(shí),將0代入方程得m=1, 此時(shí)二次方程t2-(m+1)t+1-m=0的根是確定的,一個(gè)為

10、0,一個(gè)為2>,不符合第一種情況的要求; 當(dāng)屬于第二種情況時(shí), 即0,x∈R).若f(x)在區(qū)間(π,2π)內(nèi)沒有零點(diǎn),則ω的取值范圍是______________. 答案 ∪ 解析 f(x)=+sin ωx- =(sin ωx-cos ωx)=sin. 因?yàn)楹瘮?shù)f(x)在區(qū)間(π,2π)內(nèi)沒有零點(diǎn), 所以>2π-π,所以>π,所以0<ω<1. 當(dāng)x∈(π,2π)時(shí),ωx-∈,若函數(shù)f(x)在區(qū)間(π,2π)內(nèi)有零點(diǎn), 則ωπ-

11、(k∈Z). 當(dāng)k=0時(shí),<ω<;當(dāng)k=1時(shí),<ω<. 所以函數(shù)f(x)在區(qū)間(π,2π)內(nèi)沒有零點(diǎn)時(shí), 0<ω≤或≤ω≤. 2.(2017·山東改編)已知當(dāng)x∈[0,1]時(shí),函數(shù)y=(mx-1)2的圖象與y=+m的圖象有且只有一個(gè)交點(diǎn),則正實(shí)數(shù)m的取值范圍是______________. 答案 (0,1]∪[3,+∞) 解析 設(shè)f(x)=(mx-1)2,g(x)=+m,在同一直角坐標(biāo)系中,分別作出函數(shù)f(x)=(mx-1)2=m22與g(x)=+m的大致圖象. 分兩種情形: (1)當(dāng)0

12、 (2)當(dāng)m>1時(shí),0<<1,如圖②, 要使f(x)與g(x)的圖象在[0,1]上只有一個(gè)交點(diǎn), 只需g(1)≤f(1),即1+m≤(m-1)2, 解得m≥3或m≤0(舍去). 綜上所述,m∈(0,1]∪[3,+∞). 3.(2017·江蘇)設(shè)f(x)是定義在R上且周期為1的函數(shù),在區(qū)間[0,1)上,f(x)=其中集合D=,則方程f(x)-lg x=0的解的個(gè)數(shù)是________. 答案 8 解析 由于f(x)∈[0,1),則只需考慮1≤x<10的情況,在此范圍內(nèi),當(dāng)x∈Q,且x?Z時(shí),設(shè)x=,p,q∈N*,p≥2且p,q互質(zhì).若lg x∈Q,則由lg x∈(0,1),可設(shè)

13、lg x=,m,n∈N*,m≥2且m,n互質(zhì).因此=, 則10n=m,此時(shí)左邊為整數(shù),右邊為非整數(shù),矛盾.因此lg x?Q,因此lg x不可能與每個(gè)周期內(nèi)x∈D對應(yīng)的部分相等,只需考慮lg x與每個(gè)周期內(nèi)x?D部分的交點(diǎn),畫出函數(shù)草圖.圖中交點(diǎn)除(1,0)外其他交點(diǎn)橫坐標(biāo)均為無理數(shù),屬于每個(gè)周期內(nèi)x?D部分,且x=1處(lg x)′==<1,則在x=1附近僅有1個(gè)交點(diǎn),因此方程解的個(gè)數(shù)為8. 押題預(yù)測 1.f(x)=2sin πx-x+1的零點(diǎn)個(gè)數(shù)為(  ) A.4 B.5 C.6 D.7 押題依據(jù) 函數(shù)的零點(diǎn)是高考的一個(gè)熱點(diǎn),利用函數(shù)圖象的交點(diǎn)確定零點(diǎn)個(gè)數(shù)是一種常用方

14、法. 答案 B 解析 令2sin πx-x+1=0,則2sin πx=x-1,令h(x)=2sin πx,g(x)=x-1,則f(x)=2sin πx-x+1的零點(diǎn)個(gè)數(shù)問題就轉(zhuǎn)化為兩個(gè)函數(shù)h(x)與g(x)圖象的交點(diǎn)個(gè)數(shù)問題.h(x)=2sin πx的最小正周期為T==2,畫出兩個(gè)函數(shù)的圖象,如圖所示,因?yàn)閔(1)=g(1),h>g,g(4)=3>2,g(-1)=-2,所以兩個(gè)函數(shù)圖象的交點(diǎn)一共有5個(gè),所以f(x)=2sin πx-x+1的零點(diǎn)個(gè)數(shù)為5. 2.已知函數(shù)f(x)=若函數(shù)g(x)=f(x)-2x恰有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是(  ) A.[-1,1) B.

15、[0,2] C.(-2,2] D.[-1,2) 押題依據(jù) 利用函數(shù)零點(diǎn)個(gè)數(shù)可以得到函數(shù)圖象的交點(diǎn)個(gè)數(shù),進(jìn)而確定參數(shù)范圍,較好地體現(xiàn)了數(shù)形結(jié)合思想. 答案 D 解析 g(x)=f(x)-2x=要使函數(shù)g(x)恰有三個(gè)不同的零點(diǎn),只需g(x)=0恰有三個(gè)不同的實(shí)數(shù)根, 所以或 所以g(x)=0的三個(gè)不同的實(shí)數(shù)根為x=2(x>a), x=-1(x≤a),x=-2(x≤a). 再借助數(shù)軸,可得-1≤a<2. 所以實(shí)數(shù)a的取值范圍是[-1,2),故選D. 3.已知定義在R上的偶函數(shù)f(x)滿足f(x+4)=f(x),且當(dāng)0≤x≤2時(shí),f(x)=min{-x2+2x,2-x},若方

16、程f(x)-mx=0恰有兩個(gè)實(shí)根,則m的取值范圍是(  ) A.∪ B.∪ C.∪ D.∪ 押題依據(jù) 在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,先研究特殊位置,結(jié)合函數(shù)的性質(zhì),利用數(shù)形結(jié)合法,構(gòu)建關(guān)于參數(shù)的不等式(組)求解. 答案 C 解析 當(dāng)0≤x<1時(shí),-x2+2x<2-x,當(dāng)1≤x≤2時(shí),-x2+2x≥2-x,所以f(x)=又因?yàn)閒(x)是偶函數(shù),且是以4為周期的周期函數(shù),作出函數(shù)f(x)的圖象(圖略),直線y=mx與y=-x2+2x的圖象相切時(shí),m=2,直線y=mx經(jīng)過點(diǎn)(3,1)時(shí),與函數(shù)f(x)的圖象有三個(gè)交點(diǎn),此時(shí)m=,故x≥0時(shí),要使方程f(x)-mx=0恰有兩個(gè)實(shí)根

17、,則0,f?=->0,f?=-<0,f?f?<0, 所以函數(shù)f(x)在區(qū)間內(nèi)必有零點(diǎn),故選B. 2.(2018·紹興市柯橋區(qū)模擬)已知x0是函數(shù)f(x)=e-x+的零點(diǎn),若x1∈(0,x0),x2∈(x0,2),則(  ) A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0 C.f(x1)>0,f(x2)<

18、0 D.f(x1)>0,f(x2)>0 答案 C 解析 函數(shù)f(x)的定義域?yàn)閧x|x≠2},又e-x>0,且x<2時(shí),<0,故f(x)的零點(diǎn)x0∈(-∞,2),求導(dǎo)得f′(x)=-e-x-<0,則函數(shù)f(x)在區(qū)間(-∞,2),(2,+∞)上單調(diào)遞減,由0f(x0)>f(x2),即f(x1)>0,f(x2)<0,故選C. 3.已知定義在R上的奇函數(shù)f(x)滿足當(dāng)x>0時(shí),f(x)=2x+2x-4,則f(x)的零點(diǎn)個(gè)數(shù)是(  ) A.2 B.3 C.4 D.5 答案 B 解析 由于函數(shù)f(x)是定義在R上的奇函數(shù), 故f(0)=0.

19、 由于f?·f(2)<0, 而函數(shù)f(x)在(0,+∞)上單調(diào)遞增, 故當(dāng)x>0時(shí)有1個(gè)零點(diǎn),根據(jù)奇函數(shù)的對稱性可知, 當(dāng)x<0時(shí),也有1個(gè)零點(diǎn).故一共有3個(gè)零點(diǎn). 4.已知函數(shù)f(x)=x2+2x-(x<0)與g(x)=x2+log2(x+a)的圖象上存在關(guān)于y軸對稱的點(diǎn),則a的取值范圍是(  ) A.(-∞,-) B.(-∞,) C. D. 答案 B 解析 f(x)=x2+2x-(x<0), 當(dāng)x>0時(shí),-x<0,f(-x)=x2+2-x-(x>0), 所以f(x)關(guān)于y軸對稱的函數(shù)為h(x)=f(-x)=x2+2-x-(x>0), 由題意得x2+2-x-=x

20、2+log2(x+a)在x>0時(shí)有解,作出函數(shù)的圖象如圖所示, 當(dāng)a≤0時(shí),函數(shù)y=2-x-與y=log2(x+a)的圖象在(0,+∞)上必有交點(diǎn),符合題意, 若a>0,若兩函數(shù)在(0,+∞)上有交點(diǎn),則log2a<, 解得0

21、x-1|+|2x|=|x-1|+|x|+|x+1|,即|x-1|+|x|+|2x-1|-|x+1|=0,設(shè)g(x)=|x-1|+|x|+|2x-1|-|x+1|,則g(x)=令g(x)=0,解得x=或x=1, 所以方程f(2x-1)=f(x)所有根的和是+1=,故選C. 6.已知函數(shù)f(x)=則方程f(f(x))-2=0的實(shí)根個(gè)數(shù)為(  ) A.6 B.5 C.4 D.3 答案 C 解析 令t=f(x),則方程f(f(x))-2=0等價(jià)于f(t)-2t-=0,在同一平面直角坐標(biāo)系中作出f(x)與直線y=2x+的圖象, 由圖象可得有兩個(gè)交點(diǎn),且f(t)-2t-=0的兩根分別

22、為t1=0和1

23、只有3個(gè)零點(diǎn), 且在(-1,0)上有1個(gè)零點(diǎn),在[0,9]上有2個(gè)零點(diǎn)且不在區(qū)間端點(diǎn)處.而2 019=201×10+9, 故在區(qū)間[0,2 019]上共有201×3+2=605(個(gè))零點(diǎn). 8.已知函數(shù)f(x)=g(x)=f(x)-kx(k∈R). ①當(dāng)k=1時(shí),函數(shù)g(x)有________個(gè)零點(diǎn); ②若函數(shù)g(x)有3個(gè)零點(diǎn),則k的取值范圍是________. 答案 1  解析?、佼?dāng)k=1時(shí),g(x)=0,即f(x)=x, 當(dāng)0

24、 ②若函數(shù)g(x)有3個(gè)零點(diǎn),則k≠0. 當(dāng)x≥π時(shí),=kx(k>0),最多有1個(gè)解, 即有x=≥π,解得0

25、(x)滿足|2-μ|≤1的零點(diǎn)為μ, 因?yàn)閨2-μ|≤1,解得1≤μ≤3. 因?yàn)楹瘮?shù)g(x)的圖象開口向上, 所以要使g(x)的一個(gè)零點(diǎn)落在區(qū)間[1,3]上, 則需滿足g(1)g(3)≤0或 解得≤a≤4或3≤a<,得3≤a≤4. 故實(shí)數(shù)a的取值范圍為[3,4]. 10.(2018·浙江)已知λ∈R,函數(shù)f(x)=當(dāng)λ=2時(shí),不等式f(x)<0的解集是________.若函數(shù)f(x)恰有2個(gè)零點(diǎn),則λ的取值范圍是________. 答案 (1,4) (1,3]∪(4,+∞) 解析 當(dāng)λ=2時(shí),f(x)= 其圖象如圖(1). 由圖知f(x)<0的解集為(1,4). f

26、(x)=恰有2個(gè)零點(diǎn)有兩種情況:①二次函數(shù)有兩個(gè)零點(diǎn),一次函數(shù)無零點(diǎn);②二次函數(shù)與一次函數(shù)各有一個(gè)零點(diǎn). 在同一平面直角坐標(biāo)系中畫出y1=x-4與y2=x2-4x+3的圖象,如圖(2),平移直線x=λ,可得λ∈(1,3]∪(4,+∞). B組 能力提高 11.定義在R上的奇函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=若關(guān)于x的方程f(x)-a=0(0

27、)=-f(-x)=-(1-|-x-3|)=|x+3|-1,所以函數(shù)f(x)的圖象如圖所示,令g(x)=f(x)-a,函數(shù)g(x)的零點(diǎn)即為函數(shù)y=f(x)與y=a的交點(diǎn),如圖所示,共5個(gè).當(dāng)x∈(-∞,-1]時(shí),令|x+3|-1=a,解得x1=-4-a,x2=a-2,當(dāng)x∈(-1,0)時(shí),令log2(1-x)=a,解得x3=1-2a;當(dāng)x∈[1,+∞)時(shí),令1-|x-3|=a,解得x4=4-a,x5=a+2,所以所有零點(diǎn)之和為x1+x2+x3+x4+x5=-4-a+a-2+1-2a+4-a+a+2=1-2a=1-,∴a=. 12.若函數(shù)f(x)=ax+ln x-有3個(gè)不同的零點(diǎn),則實(shí)數(shù)a

28、的取值范圍是(  ) A. B. C. D. 答案 A 解析 函數(shù)f(x)=ax+ln x-有3個(gè)不同的零點(diǎn), 等價(jià)于a=-,x∈(0,+∞)有3個(gè)不同解, 令g(x)=-,x∈(0,+∞), 則g′(x)=- =, 當(dāng)x∈(0,+∞)時(shí),令y=2x-ln x, 則y′=2-=, 當(dāng)x∈時(shí),y′<0,y單調(diào)遞減; 當(dāng)x∈時(shí),y′>0,y單調(diào)遞增, 則ymin=1-ln=1+ln 2>0, 則當(dāng)x∈(0,+∞)時(shí),恒有2x-ln x>0, 令g′(x)=0,得x=1或x=e, 且x∈(0,1)時(shí),g′(x)<0,g(x)單調(diào)遞減; x∈時(shí),g′(x)>0

29、,g(x)單調(diào)遞增; x∈時(shí),g′(x)<0,g(x)單調(diào)遞減, 則g(x)的極小值為g(1)=1, g(x)的極大值為g(e)=-, 當(dāng)x→0時(shí),g(x)→+∞, 當(dāng)x→+∞時(shí),g(x)→1. 結(jié)合函數(shù)圖象(圖略)可得, 當(dāng)1

30、(1-,0) 解析 f(x)=|x|(2-x)= 如圖所示,關(guān)于x的方程f(x)=m恰有三個(gè)互不相等的實(shí)根x1,x2,x3, 即函數(shù)y=f(x)的圖象與直線y=m有三個(gè)不同的交點(diǎn),則00時(shí),由對稱性知, x2+x3=2,0

31、____個(gè).(用數(shù)字作答) 答案 1 3 解析 f(e)=ln e=1.函數(shù)y=f(f(x))-1的零點(diǎn)個(gè)數(shù)為方程f(f(x))=1的根的個(gè)數(shù),則①由ln x=1(x≥1),得x=e,于是f(x)=e,則由ln x=e(x≥1),得x=ee;由ef(|x|+1)=e(x<1),得f(|x|+1)=1, 所以ln(|x|+1)=1,解得x=e-1(舍去)或x=1-e;②由ef(|x|+1)=1(x<1),得f(|x|+1)=0, 所以ln(|x|+1)=0,解得x=0,所以f(x)=0, 只有l(wèi)n x=0(x≥1),解得x=1.綜上可知,函數(shù)y=f(f(x))-1有x=ee,1-e,1,共3個(gè)零點(diǎn). 15

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!