2022-2023學(xué)年高中數(shù)學(xué) 第1部分 第1章 常用邏輯用語 1.1 命題及其關(guān)系 1.1.1 四種命題講義(含解析)蘇教版選修2-1

上傳人:xt****7 文檔編號(hào):105542042 上傳時(shí)間:2022-06-12 格式:DOC 頁數(shù):9 大小:162.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022-2023學(xué)年高中數(shù)學(xué) 第1部分 第1章 常用邏輯用語 1.1 命題及其關(guān)系 1.1.1 四種命題講義(含解析)蘇教版選修2-1_第1頁
第1頁 / 共9頁
2022-2023學(xué)年高中數(shù)學(xué) 第1部分 第1章 常用邏輯用語 1.1 命題及其關(guān)系 1.1.1 四種命題講義(含解析)蘇教版選修2-1_第2頁
第2頁 / 共9頁
2022-2023學(xué)年高中數(shù)學(xué) 第1部分 第1章 常用邏輯用語 1.1 命題及其關(guān)系 1.1.1 四種命題講義(含解析)蘇教版選修2-1_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022-2023學(xué)年高中數(shù)學(xué) 第1部分 第1章 常用邏輯用語 1.1 命題及其關(guān)系 1.1.1 四種命題講義(含解析)蘇教版選修2-1》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022-2023學(xué)年高中數(shù)學(xué) 第1部分 第1章 常用邏輯用語 1.1 命題及其關(guān)系 1.1.1 四種命題講義(含解析)蘇教版選修2-1(9頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022-2023學(xué)年高中數(shù)學(xué) 第1部分 第1章 常用邏輯用語 1.1 命題及其關(guān)系 1.1.1 四種命題講義(含解析)蘇教版選修2-1 命題的概念 (1)這幅畫真漂亮! (2)求證是無理數(shù); (3)菱形是平行四邊形嗎? (4)等腰三角形的兩底角相等; (5)x>2 012; (6)若x2=2 0122,則x=2 012. 問題:在這些語句中哪些能判斷出真假,哪些不能判斷出真假. 提示:(1)(2)(3)(5)不能判斷真假;(4)(6)能判斷真假. 1.能夠判斷真假的語句叫做命題. 2.命題 四種命題及其關(guān)系 觀察下列四個(gè)命題: (1)若兩個(gè)

2、三角形全等,則這兩個(gè)三角形相似; (2)若兩個(gè)三角形相似,則這兩個(gè)三角形全等; (3)若兩個(gè)三角形不全等,則這兩個(gè)三角形不相似; (4)若兩個(gè)三角形不相似,則這兩個(gè)三角形不全等. 問題:命題(1)與命題(2)、(3)、(4)的條件和結(jié)論之間分別有什么關(guān)系? 提示:命題(1)的條件是命題(2)的結(jié)論,且命題(1)的結(jié)論是命題(2)的條件. 對(duì)于命題(1)和(3).其中一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的條件的否定和結(jié)論的否定; 對(duì)于命題(1)和(4).其中一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論的否定和條件的否定. 1.四種命題的概念 (1)如果一個(gè)命題的條件和結(jié)論是另

3、一個(gè)命題的結(jié)論和條件,那么這兩個(gè)命題叫做互逆命題. (2)如果一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的條件的否定和結(jié)論的否定,那么這兩個(gè)命題叫做互否命題. (3)如果一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論的否定和條件的否定,那么這兩個(gè)命題叫做互為逆否命題. 2.命題的四種形式 原命題:若p,則q;逆命題:若q,則p; 否命題:若非p,則非q;逆否命題:若非q,則非p. 3.四種命題之間的關(guān)系 四種命題真假之間的關(guān)系 觀察下列命題,回答后面的問題: (1)如果兩個(gè)三角形全等,那么它們的面積相等; (2)如果兩個(gè)三角形的面積相等,那么它們?nèi)龋? (3)如

4、果兩個(gè)三角形不全等,那么它們的面積不相等; (4)如果兩個(gè)三角形面積不相等,那么它們不全等. 問題1:若把命題(1)看作原命題,這四個(gè)命題之間有什么關(guān)系? 提示:(1)與(2)、(3)與(4)為互逆關(guān)系;(1)與(3)、(2)與(4)為互否關(guān)系;(1)與(4)、(2)與(3)為互為逆否關(guān)系. 問題2:判斷四個(gè)命題的真假. 提示:命題(1)(4)是真命題;命題(2)(3)是假命題. 1.四種命題的真假性 原命題 逆命題 否命題 逆否命題 真 真 真 真 真 假 假 真 假 真 真 假 假 假 假 假 2.四種命題的真假性之間的關(guān)系

5、 (1)兩個(gè)命題互為逆否命題,它們有相同的真假性. (2)兩個(gè)命題互為逆命題或否命題,它們的真假性沒有關(guān)系. 1.原命題是相對(duì)其他三種命題而言的.事實(shí)上,可以把任意一個(gè)命題看成原命題,來研究它的其他形式的命題. 2.當(dāng)一個(gè)命題有大前提而要寫出其他三種命題時(shí),大前提仍作大前提. 3.若兩個(gè)命題互為逆否命題,則它們有相同的真假性,即它們同真同假.所以,當(dāng)一個(gè)命題的真假不易判斷時(shí),可以通過對(duì)其逆否命題的真假的判斷來判斷原命題的真假. 命題的概念及其判斷 [例1] 判斷下列語句是否為命題?若是命題,則判斷其真假: (1)是無限循環(huán)小數(shù); (2)x2-3

6、x+2=0; (3)垂直于同一條直線的兩條直線必平行嗎? (4)一個(gè)等比數(shù)列的公比大于1時(shí),該數(shù)列為遞增數(shù)列; (5)當(dāng)x=4時(shí),2x+1>0; (6)把門關(guān)上. [思路點(diǎn)撥] 首先判斷是不是命題,如果是,然后再判斷它是真命題還是假命題. [精解詳析] (1)能判斷真假,是命題,是假命題. (2)不是命題,因?yàn)檎Z句中含有變量x,在沒給變量x賦值前,無法判斷語句的真假(這種語句叫“開語句”). (3)不能判斷真假,不是命題. (4)是命題,當(dāng)?shù)缺葦?shù)列的首項(xiàng)a1<0,公比q>1時(shí),該數(shù)列是遞減數(shù)列,因此是一個(gè)假命題. (5)能判斷真假,是命題,是真命題. (6)因?yàn)闆]有作出判

7、斷,所以不是命題. [一點(diǎn)通]  1.判斷一個(gè)語句是不是命題,關(guān)鍵是看能不能判斷真假. 2.判定一個(gè)命題是真命題時(shí),一般需要經(jīng)過嚴(yán)格的推理論證,論證要有推理依據(jù),有時(shí)應(yīng)綜合各種情況作出正確的判斷;而判定一個(gè)命題為假命題時(shí),只需舉出一個(gè)反例即可. 1.下列語句: (1)2+2 是有理數(shù); (2)1+1>2; (3)2100是個(gè)大數(shù); (4)968能被11整除; (5)非典型性肺炎是怎樣傳播的? 其中是命題的是________. 解析:(1)能判斷真假,是命題,是假命題; (2)能判斷真假,是命題,是假命題; (3)不能判斷真假,不是命題; (4)是命題,是真命題;

8、 (5)不能判斷真假,不是命題. 答案:(1)、(2)、(4) 2.判斷下列命題的真假: (1)函數(shù)y=sin4x-cos4x的最小正周期是π; (2)斜率相等的兩條直線平行; (3)不等式|3x-2|>4的解集是(-∞,-)∪(2,+∞); (4)平行于同一平面的兩條直線平行. 解:(1)y=sin4x-cos4x=sin2x-cos2x=-cos 2x,顯然其最小正周期為π,故(1)為真命題. (2)斜率相等的兩條直線有可能平行,也有可能重合,故(2)是假命題. (3)由|3x-2|>4得,3x-2>4或3x-2<-4, ∴x>2或x<-, ∴|3x-2|>4的解集

9、是(-∞,-)∪(2,+∞). 故(3)為真命題. (4)平行于同一平面的兩條直線可能平行,可能相交,可能異面,故(4)為假命題. 四種命題及其真假判斷 [例2] 分別寫出下列命題的逆命題、否命題和逆否命題,并判斷其真假: (1)若實(shí)數(shù)a,b,c成等比數(shù)列,則b2=ac; (2)函數(shù)y=logax(a>0且a≠1)在(0,+∞)上是減函數(shù)時(shí),loga2<0. [思路點(diǎn)撥] 先分清所給命題的條件和結(jié)論,再按要求寫出逆命題、否命題和逆否命題,并做出真假判斷. [精解詳析]  (1)原命題可以寫成:若實(shí)數(shù)a,b,c成等比數(shù)列,則b2=ac,為真命題. 逆命題:若實(shí)數(shù)a

10、,b,c滿足b2=ac,則a,b,c成等比數(shù)列,為假命題. 否命題:若實(shí)數(shù)a,b,c不成等比數(shù)列,則b2≠ac,為假命題. 逆否命題:若實(shí)數(shù)a,b,c,滿足b2≠ac,則a,b,c不成等比數(shù)列,為真命題. (2)原命題可以寫成:若函數(shù)y=logax(a>0且a≠1)在(0,+∞)上是減函數(shù),則loga2<0,為真命題. 逆命題:若loga2<0,則函數(shù)y=logax(a>0且a≠1)在(0,+∞)上是減函數(shù),為真命題. 否命題:若函數(shù)y=logax(a>0且a≠1)在(0,+∞)上不是減函數(shù),則loga2≥0,為真命題. 逆否命題:若loga2≥0,則函數(shù)y=logax(a>0且a

11、≠1)在(0,+∞)上不是減函數(shù),為真命題. [一點(diǎn)通]  1.四種命題進(jìn)行轉(zhuǎn)化時(shí)應(yīng)首先找出原命題的條件和結(jié)論,然后利用四種命題的概念直接轉(zhuǎn)化即可. 2.對(duì)于命題的真假判斷,當(dāng)直接判斷有難度時(shí),可以通過判斷它的逆否命題的真假來判斷. 3.把下列命題改寫成“若p,則q”的形式,并判斷命題的真假: (1)等腰三角形的兩個(gè)底角相等; (2)當(dāng)x=2或x=4時(shí),x2-6x+8=0; (3)已知x、y為正整數(shù),當(dāng)y=x+1時(shí),y=3,x=2. 解:(1)原命題可改寫成:若一個(gè)三角形是等腰三角形,則兩個(gè)底角相等,真命題. (2)原命題可改寫成:若x=2或x=4,則x2-6x+8=0,

12、真命題. (3)原命題可改寫成:已知x、y為正整數(shù),若y=x+1,則y=3,x=2.假命題. 4.寫出下列原命題的其他三種命題,并分別判斷其真假: (1)在△ABC中,若a>b,則∠A>∠B; (2)正偶數(shù)不是質(zhì)數(shù); (3)若x∈A則x∈(A∪B). 解:(1)原命題:在△ABC中,若a>b,則∠A>∠B,真命題; 逆命題:在△ABC中,若∠A>∠B,則a>b,真命題; 否命題:在△ABC中,若a≤b,則∠A≤∠B,真命題; 逆否命題:在△ABC中,若∠A≤∠B,則a≤b,真命題. (2)原命題:若一個(gè)數(shù)是正偶數(shù),則它一定不是質(zhì)數(shù),假命題,例如2; 逆命題:若一個(gè)數(shù)不是質(zhì)

13、數(shù),則它一定是正偶數(shù),假命題,例如9; 否命題:若一個(gè)數(shù)不是正偶數(shù),則它一定是質(zhì)數(shù),假命題,例如9; 逆否命題:若一個(gè)數(shù)是質(zhì)數(shù),則它一定不是正偶數(shù),假命題,例如2. (3)原命題:若x∈A,則x∈(A∪B),真命題; 逆命題:若x∈(A∪B),則x∈A,假命題; 否命題:若x?A,則x?(A∪B),假命題; 逆否命題:若x?(A∪B),則x?A,真命題. 四種命題的綜合應(yīng)用    [例3] 證明:已知函數(shù)f(x)是(-∞,+∞)上的增函數(shù),a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),則a+b≥0. [思路點(diǎn)撥] 根據(jù)原命題與逆否命題的等價(jià)性,先證逆否命

14、題即可. [精解詳析] 法一:原命題的逆否命題為“已知函數(shù)f(x)是(-∞,+∞)上的增函數(shù),a,b∈R,若a+b<0,則f(a)+f(b)

15、+f(-b). 這與已知條件f(a)+f(b)≥f(-a)+f(-b)相矛盾. 因此假設(shè)不成立,故a+b≥0. [一點(diǎn)通] 由于原命題與它的逆否命題具有相同的真假性,所以在直接證明某一個(gè)命題為真命題有困難時(shí),可以通過證明它的逆否命題為真命題來間接地證明原命題為真命題. 5.已知c>0,設(shè)p:函數(shù)y=cx在R上單調(diào)遞減,q:不等式x+|x-2c|>1的解集為R,如果p和q有且僅有一個(gè)正確,求c的取值范圍. 解:函數(shù)y=cx在R上單調(diào)遞減?01的解集為R?函數(shù)y=x+|x-2c|在R上恒大于1. ∵x+|x-2c|

16、= ∴函數(shù)y=x+|x-2c|在R上的最小值為2c. ∴不等式x+|x-2c|>1的解集為R?2c>1?c>. 記Q=. 如果p正確,且q不正確, 借助數(shù)軸得0

17、“若a=2b+1,則a2-4b2-2a+1=0”為真命題. 由原命題與逆否命題具有相同的真假性可知,結(jié)論正確. 1.寫四種命題時(shí),可以按下列步驟進(jìn)行: (1)找出原命題的條件p和結(jié)論q; (2)寫出條件p的否定非p和結(jié)論q的否定非q; (3)按照四種命題的概念寫出所有命題. 2.判斷命題的真假時(shí),可以根據(jù)互為逆否的命題的真假性相同來判斷,這也是反證法的理論基礎(chǔ). [對(duì)應(yīng)課時(shí)跟蹤訓(xùn)練(一)]  1.給出下列語句:①空集是任何集合的真子集;②三角函數(shù)是周期函數(shù)嗎?③一個(gè)數(shù)不是正數(shù)就是負(fù)數(shù);④老師寫的粉筆字真漂亮!⑤若x∈R,則x2+4x+5>0.其中為命題的序

18、號(hào)是________,為真命題的序號(hào)是________. 解析:①是命題,且是假命題,因?yàn)榭占侨魏畏强占系恼孀蛹?;②該語句是疑問句,不是命題;③是命題,且是假命題,因?yàn)閿?shù)0既不是正數(shù),也不是負(fù)數(shù);④該語句是感嘆句,不是命題;⑤是命題,因?yàn)閤2+4x+5=(x+2)2+1>0恒成立,所以是真命題. 答案:①③⑤?、? 2.設(shè)a,b是向量,命題“若a=-b,則|a|=|b|”的逆命題是________________________. 答案:若|a|=|b|,則a=-b 3.命題“對(duì)于正數(shù)a,若a>1,則lg a>0”及其逆命題、否命題、逆否命題四個(gè)命題中真命題的個(gè)數(shù)為________

19、. 解析:逆命題:對(duì)于正數(shù)a,若lg a>0,則a>1. 否命題:對(duì)于正數(shù)a,若a≤1,則lg a≤0. 逆否命題:對(duì)于正數(shù)a,若lg a≤0,則a≤1. 根據(jù)對(duì)數(shù)的性質(zhì)可知都是真命題. 答案:4 4.命題“若α=,則tan α=1”的逆否命題是________. 解析:將條件與結(jié)論分別否定,再交換即可. 答案:若tan α≠1,則α≠ 5.給出下列命題:①“若x2+y2≠0,則x,y不全為零”的否命題;②“若{an}既是等差數(shù)列,又是等比數(shù)列,則an=an+1(n∈N*)”的逆命題;③“若m>1,則不等式x2+2x+m>0的解集為R”的逆否命題. 其中所有真命題的序號(hào)是_

20、_______. 解析:①的否命題為“若x2+y2=0,則x,y全為零”是真命題;②的逆命題為“數(shù)列{an}中,若an=an+1(n∈N*),則數(shù)列{an}既是等差數(shù)列,又是等比數(shù)列”是假命題,如0,0,0……;對(duì)于③當(dāng)m>1時(shí),Δ=4-4m<0恒成立,x2+2x+m>0的解集為R是真命題.因此逆否命題是真命題. 答案:①③ 6.把下列命題寫成“若p,則q”的形式,并判斷真假. (1)奇函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱; (2)當(dāng)x2-2x-3=0時(shí),x=-3或x=1; (3)a<0時(shí),函數(shù)y=ax+b的值隨x值的增大而增大. 解:(1)若一個(gè)函數(shù)是奇函數(shù),則它的圖像關(guān)于原點(diǎn)對(duì)稱,是真命題

21、. (2)若x2-2x-3=0,則x=-3或x=1,是假命題. (3)若a<0,則函數(shù)y=ax+b的值隨著x值的增大而增大,是假命題. 7.證明:若m2+n2=2,則m+n≤2. 證明:將“若m2+n2=2,則m+n≤2”視為原命題,則它的逆否命題為“若m+n>2,則m2+n2≠2”. 由于m+n>2,則m2+n2≥(m+n)2>×22=2, 所以m2+n2≠2. 故原命題的逆否命題為真命題,從而原命題也為真命題. 8.判斷下列命題的真假,并寫出它們的逆命題、否命題、逆否命題,并判斷其真假. (1)若四邊形的對(duì)角互補(bǔ),則該四邊形是圓的內(nèi)接四邊形; (2)若在二次函數(shù)y=ax2+bx+c中,b2-4ac<0,則該函數(shù)圖像與x軸有交點(diǎn). 解:(1)該命題為真. 逆命題:若四邊形是圓的內(nèi)接四邊形,則四邊形的對(duì)角互補(bǔ),為真. 否命題:若四邊形的對(duì)角不互補(bǔ),則該四邊形不是圓的內(nèi)接四邊形,為真. 逆否命題:若四邊形不是圓的內(nèi)接四邊形,則四邊形的對(duì)角不互補(bǔ),為真. (2)該命題為假. 逆命題:若二次函數(shù)y=ax2+bx+c的圖像與x軸有交點(diǎn),則b2-4ac<0,為假. 否命題:若二次函數(shù)y=ax2+bx+c中b2-4ac≥0,則函數(shù)圖像與x軸無交點(diǎn),為假. 逆否命題:若二次函數(shù)y=ax2+bx+c的圖像與x軸無交點(diǎn),則b2-4ac≥0,為假.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!