2022年高考數(shù)學(xué)專題復(fù)習(xí) 第25講 平面向量基本定理及坐標(biāo)表示練習(xí) 新人教A版

上傳人:xt****7 文檔編號:105468832 上傳時(shí)間:2022-06-12 格式:DOC 頁數(shù):9 大?。?40.02KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高考數(shù)學(xué)專題復(fù)習(xí) 第25講 平面向量基本定理及坐標(biāo)表示練習(xí) 新人教A版_第1頁
第1頁 / 共9頁
2022年高考數(shù)學(xué)專題復(fù)習(xí) 第25講 平面向量基本定理及坐標(biāo)表示練習(xí) 新人教A版_第2頁
第2頁 / 共9頁
2022年高考數(shù)學(xué)專題復(fù)習(xí) 第25講 平面向量基本定理及坐標(biāo)表示練習(xí) 新人教A版_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)專題復(fù)習(xí) 第25講 平面向量基本定理及坐標(biāo)表示練習(xí) 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)專題復(fù)習(xí) 第25講 平面向量基本定理及坐標(biāo)表示練習(xí) 新人教A版(9頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)專題復(fù)習(xí) 第25講 平面向量基本定理及坐標(biāo)表示練習(xí) 新人教A版 [考情展望] 1.考查用平面向量的坐標(biāo)運(yùn)算進(jìn)行向量的線性運(yùn)算.2.考查應(yīng)用平面向量基本定理進(jìn)行向量的線性運(yùn)算.3.以向量的坐標(biāo)運(yùn)算及共線向量定理為載體,考查學(xué)生分析問題和解決問題的能力. 一、平面向量基本定理  如果e1,e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對于該平面內(nèi)任一向量a,有且只有一對實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2是一組基底. 二、平面向量的坐標(biāo)運(yùn)算及向量平行的坐標(biāo)表示 1.平面向量的坐標(biāo)運(yùn)算 (1)若a=(x1,y1),b=(x2,y2)(b≠0),則a±b=

2、(x1±x2,y1±y2). (2)若A(x1,y1),B(x2,y2),則=(x2-x1,y2-y1),||=. (3)若a=(x,y),λ∈R,則λa=(λx,λy). 2.向量平行的坐標(biāo)表示 (1)如果a=(x1,y1),b=(x2,y2),則a∥b的充要條件為x1y2-x2y1=0. (2)三點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3)共線的充要條件為(x2-x1)(y3-y1)-(x3-x1)(y2-y1)=0. 共線向量的坐標(biāo)表示 若a=(x1,y1),b=(x2,y2),則a∥b的充要條件不能表示成=,因?yàn)閤2,y2有可能等于0,所以應(yīng)表示為x1y2-

3、x2y1=0. 1.下列各組向量:①e1=(-1,2),e2=(5,7);②e1=(3,5),e2=(6,10);③e1=(2,-3),e2=(,-),能作為表示它們所在平面內(nèi)所有向量基底的是(  ) A.①    B.①③   C.②③   D.①②③ 【解析】  ②中,e2=2e1,e1與e2共線;③中e1=4e2,e1與e2共線,故選A. 【答案】 A 2.若a=(3,2),b=(0,-1),則2b-a的坐標(biāo)是(  ) A.(3,-4) B.(-3,4) C.(3,4) D.(-3,-4) 【解析】  2b-a=2(0,-1)-(3,2)=(-3,-4).

4、【答案】 D 3.已知a=(4,5),b=(8,y)且a∥b,則y等于(  ) A.5 B.10 C. D.15 【解析】  ∵a∥b,∴4y-40=0,∴y=10. 【答案】 B 4.在平行四邊形ABCD中,若=(1,3),=(2,5),則=________,=________. 【解析】 ?。剑剑?2,5)-(1,3)=(1,2),=-=(1,2)-(1,3)=(0,-1). 【答案】 (1,2) (0,-1) 5.(xx·廣東高考)設(shè)a是已知的平面向量且a≠0.關(guān)于向量a的分解,有如下四個(gè)命題: ①給定向量b,總存在向量c,使a=b+c; ②給定向

5、量b和c,總存在實(shí)數(shù)λ和μ,使a=λb+μ c; ③給定單位向量b和正數(shù)μ,總存在單位向量c和實(shí)數(shù)λ,使a=λb+μ c; ④給定正數(shù)λ和μ,總存在單位向量b和單位向量c,使a=λb+μ c. 上述命題中的向量b,c和a在同一平面內(nèi)且兩兩不共線,則真命題的個(gè)數(shù)是(  ) A.1    B.2    C.3    D.4 【解析】  顯然命題①②是正確的. 對于③,以a的終點(diǎn)作長度為μ的圓,這個(gè)圓必須和向量λb有交點(diǎn),這個(gè)不一定能滿足,③是錯(cuò)的,對于命題④,若λ=μ=1,|a|>2時(shí),與|a|=|b+c|≤|b|+|c|=2矛盾,則④不正確. 【答案】 B 6.(xx·北京高考)

6、向量a,b,c在正方形 圖4-2-1 網(wǎng)格中的位置如圖4-2-1所示,若c=λa+μb(λ,μ∈R),則=________. 【解析】  以向量a的終點(diǎn)為原點(diǎn),過該點(diǎn)的水平和豎直的網(wǎng)格線所在直線為x軸、y軸建立平面直角坐標(biāo)系,設(shè)一個(gè)小正方形網(wǎng)格的邊長為1,則a=(-1,1),b=(6,2),c=(-1,-3).由c=λa+ μb,即(-1,-3)=λ(-1,1)+μ(6,2),得-λ+6μ=-1,λ+2μ=-3,故λ=-2,μ=-,則=4. 【答案】 4 考向一 [074] 平面向量基本定理及其應(yīng)用  (1)(xx·長春模擬)在平行四邊形ABCD中,E和F分別是邊CD和BC

7、的中點(diǎn).若=λ+μ,其中λ,μ∈R,則λ+μ=________. 圖4-2-2 (2)如圖4-2-2,在四邊形ABCD中,AC和BD相交于點(diǎn)O,設(shè)=a,=b,若=2,則=________(用向量a和b表示). 【思路點(diǎn)撥】 (1)以,為基底分別表示,,,根據(jù)平面向量基本定理列方程組求解. (2)=2―→=―→借助三角形法則表示. 【嘗試解答】 (1)選擇,作為平面向量的一組基底,則=+,=+,=+, 又=λ+μ=(λ+μ)+(λ+μ), 于是得解得 所以λ+μ=. (2)由=2知,AB∥DC且||=2||,從而||=2||.∴==(-)=(a-b), ∴=+=b+(a-

8、b)=a+b. 【答案】 (1) (2)a+ 規(guī)律方法1 1.解答本例(1)的關(guān)鍵是根據(jù)平面向量基本定理列出關(guān)于λ,μ的方程組. 2.(1)利用平面向量基本定理表示向量時(shí),要選擇一組恰當(dāng)?shù)幕讈肀硎酒渌蛄?,即用特殊向量表示一般向量.常與待定系數(shù)法、方程思想緊密聯(lián)系在一起解決問題. (2)利用已知向量表示未知向量,實(shí)質(zhì)就是利用三角形法則進(jìn)行向量的加減運(yùn)算,在解題時(shí),注意方程思想的運(yùn)用. 對點(diǎn)訓(xùn)練 (xx·江蘇高考)設(shè)D,E分別是△ABC的邊AB,BC上的點(diǎn),AD=AB,BE=BC.若=λ1+λ2(λ1,λ2為實(shí)數(shù)),則λ1+λ2的值為________. 【解析】  由題意=-=-=

9、(-)+=-+,于是λ1=-,λ2=,故λ1+λ2=. 【答案】  考向二 [075] 平面向量的坐標(biāo)運(yùn)算  已知O(0,0),A(-2,4),B(3,-1),C(-3,-4). 設(shè)=a,=b,=c,且=3c,=-2b, (1)求:3a+b-3c; (2)求滿足a=mb+nc的實(shí)數(shù)m,n; (3)求M、N的坐標(biāo)及向量的坐標(biāo). 【思路點(diǎn)撥】 利用向量的坐標(biāo)運(yùn)算及向量的坐標(biāo)與其起點(diǎn)、終點(diǎn)坐標(biāo)的關(guān)系求解. 【嘗試解答】 a==(3-(-2),-1-4)=(5,-5), b==(-3-3,-4-(-1))=(-6,-3), c==(-2-(-3),4-(-4))=(1,8).

10、(1)3a+b-3c=(15,-15)+(-6,-3)-(3,24) =(15-6-3,-15-3-24)=(6,-42). (2)由a=mb+nc,得(5,-5)=(-6m,-3m)+(n,8n) =(-6m+n,-3m+8n). ∴解得 (3)∵=-=3c, ∴=3c+=(3,24)+(-3,-4)=(0,20). ∴M(0,20). 又∵=-=-2b, ∴=-2b+=(12,6)+(-3,-4)=(9,2), ∴N(9,2). ∴=(9,-18). 規(guī)律方法2 1.向量的坐標(biāo)運(yùn)算主要是利用向量加減、數(shù)乘運(yùn)算的法則進(jìn)行.若已知有向線段兩端點(diǎn)的坐標(biāo),則應(yīng)先求向量的坐標(biāo)

11、,注意方程思想的應(yīng)用. 2.平面向量的坐標(biāo)運(yùn)算的引入為向量提供了新的語言——“坐標(biāo)語言”,實(shí)質(zhì)是“形”化為“數(shù)”.向量的坐標(biāo)運(yùn)算,使得向量的線性運(yùn)算都可用坐標(biāo)來進(jìn)行,實(shí)現(xiàn)了向量運(yùn)算完全代數(shù)化,將數(shù)與形緊密結(jié)合起來. 對點(diǎn)訓(xùn)練 如圖4-2-3,已知平行四邊形的三個(gè)頂點(diǎn)坐標(biāo)分別為A(4,3),B(3,-1),C(1,-2),求第四個(gè)頂點(diǎn)D的坐標(biāo). 圖4-2-3 【解】 設(shè)頂點(diǎn)D(x,y). 若平行四邊形四個(gè)頂點(diǎn)的順序?yàn)锳BCD, 則=(3-4,-1-3)=(-1,-4), =(1-x,-2-y). 由=,得解得 故第四個(gè)頂點(diǎn)D的坐標(biāo)為(2,2); 若平行四邊形四個(gè)頂點(diǎn)的順序

12、為ACBD, 則=(1-4,-2-3)=(-3,-5), =(3-x,-1-y). 由=,得解得 故第四個(gè)頂點(diǎn)D的坐標(biāo)為(6,4); 若平行四邊形四個(gè)頂點(diǎn)的順序?yàn)锳BDC, 則=(3-4,-1-3)=(-1,-4), =(x-1,y+2). 由=,得解得 故第四個(gè)頂點(diǎn)D的坐標(biāo)為(0,-6). 綜上,第四個(gè)頂點(diǎn)D的坐標(biāo)是(2,2)或(6,4)或(0,-6). 考向三 [076] 平面向量共線的坐標(biāo)表示  (1)設(shè)向量a,b滿足|a|=2,b=(2,1),且a與b的方向相反,則a的坐標(biāo)為________. (2)(xx·青島期中)向量a=,b=(cos α,1),且a∥b

13、,則cos 2α=(  ) A.-    B.    C.-    D. 【思路點(diǎn)撥】 (1)根據(jù)a與b的關(guān)系,設(shè)出a的坐標(biāo),再根據(jù)|a|=2求解; (2)由向量平行關(guān)系的坐標(biāo)表示列出等式,求出sin α后,再利用二倍角公式進(jìn)行求解. 【嘗試解答】 (1)∵a與b的方向相反且b=(2,1), ∴設(shè)a=λb=(2λ,λ),λ<0, 又|a|=2, ∴4λ2+λ2=20,即λ2=4, 又λ<0,∴λ=-2,因此a=(-4,-2). (2)∵a=,b=(cos α,1), 又由a∥b可知=tan αcos α,即sin α=, ∴cos 2α=1-2sin2α=1-=. 【答

14、案】 (1)(-4,-2) (2)D 規(guī)律方法3 1.兩平面向量共線的充要條件有兩種形式:(1)若a=(x1,y1),b=(x2,y2),則a∥b的充要條件是x1y2-x2y1=0;(2)若a∥b(a≠0),則b=λa. 2.向量共線的坐標(biāo)表示既可以判定兩向量平行,也可以由平行求參數(shù).當(dāng)兩向量的坐標(biāo)均非零時(shí),也可以利用坐標(biāo)對應(yīng)成比例來求解. 對點(diǎn)訓(xùn)練 (1)已知向量a=(1,2),b=(1,0),c=(3,4).若λ為實(shí)數(shù),(a+λb)∥c,則λ=(  ) A.   B.   C.1   D.2 (2)已知向量=(3,-4),=(6,-3),=(5-m,-3-m),若點(diǎn)A、B、C能構(gòu)

15、成三角形,則實(shí)數(shù)m滿足的條件是________. 【解析】  (1)∵a=(1,2),b=(1,0), ∴a+λb=(1,2)+λ(1,0)=(1+λ,2), 由于(a+λb)∥c,且c=(3,4), ∴4(1+λ)-6=0,解得λ=. (2)因?yàn)椋?3,-4),=(6,-3),=(5-m,-3-m),所以=(3,1),=(-m-1,-m).由于點(diǎn)A、B、C能構(gòu)成三角形,所以與不共線,而當(dāng)與共線時(shí),有=,解得m=, 故當(dāng)點(diǎn)A、B、C能構(gòu)成三角形時(shí)實(shí)數(shù)m滿足的條件是m≠. 【答案】 (1)B (2)m≠ 思想方法之十二 待定系數(shù)法在向量運(yùn)算中的應(yīng)用 根據(jù)向量之間的關(guān)系,利用

16、待定系數(shù)法列出一個(gè)含有待定系數(shù)的恒等式,然后根據(jù)恒等式的性質(zhì)求出各待定系數(shù)的值或消去這些待定系數(shù),找出原來那些系數(shù)之間的關(guān)系,從而使問題得到解決. ———— [1個(gè)示范例] ———— [1個(gè)對點(diǎn)練] ————    如圖4-2-4所示,在△OAB中,=,=,AD與BC交于點(diǎn)M,設(shè)=a, 圖4-2-4 =b,利用a和b表示向量. 【解】 設(shè)=ma+nb,則=-=ma+nb-a=(m-1)a+nb. =-=-=b-a.因?yàn)锳、M、D三點(diǎn)共線,所以存在實(shí)數(shù)λ,使 =λ,即(m-1)a+nb=-λa+b. 所以消去λ,得m+2n=1,① 同理=-=ma+nb-a=a+nb, =

17、-=b-a,因?yàn)镃、M、B三點(diǎn)共線, 所以存在實(shí)數(shù)t,使=t, 即a+nb=t. 所以 消去t,得4m+n=1,② 聯(lián)立①②,得m=,n=,所以=a+b. 圖4-2-5  如圖4-2-5所示,M是△ABC內(nèi)一點(diǎn),且滿足條件+2+3=0,延長CM交AB于N,令=a,試用a表示. 【解】 因?yàn)椋剑剑? 所以由+2+3=0,得 (+)+2(+)+3=0, 所以+3+2+3=0. 又因?yàn)锳,N,B三點(diǎn)共線,C,M,N三點(diǎn)共線, 由平面向量基本定理,設(shè)=λ,=μ, 所以λ+3+2+3μ=0. 所以(λ+2)+(3+3μ)=0. 由于和不共線,由平面向量基本定理, 得所以 所以=-=,=+=2=2a.  

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!