《2022年高三數(shù)學(xué)上學(xué)期第三次模擬考試試題 理(III)》由會員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)上學(xué)期第三次模擬考試試題 理(III)(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年高三數(shù)學(xué)上學(xué)期第三次模擬考試試題 理(III)
一.選擇題:(每小題5分,共60分。下列每小題所給選項只有一項符合題意,請將正確答案的序號填涂在答題卡上)
1.已知集合,集合,則( )
A. B. C. D.
2. 若復(fù)數(shù),其中是虛數(shù)單位,則復(fù)數(shù)的模為( )
A. B. C. D.2
3.某學(xué)生在一門功課的22次考試中,所得分?jǐn)?shù)如下莖葉圖所示,此學(xué)生該門功課考試分?jǐn)?shù)的極差與中位數(shù)之和為( )
A.117 B.118 C.118.5 D.119.5
4. 已知數(shù)列的前n
2、項和為,且,則=( )
A.-16 B.-32 C.32 D.-64
5. 已知x=log23-log2,y=log0.5π,z=0.9-1.1,則( )
A.x<y<z B.z<y<x C.y<z<x D.y<x<z
6. 在中,是的中點,,點在上,且滿足,則的值為( )
A. B. C. D.
7. 下列結(jié)論錯誤的是( )
A.命題:“若,則”的逆命題是假命題;
B.若函數(shù)可導(dǎo),則是為函數(shù)極值點的必要不充分條件;
3、C.向量的夾角為鈍角的充要條件是;
D.命題“”的否定是“”
8.執(zhí)行右面的程序框圖,輸出的S的值為( )
A.1 B.2 C.3 D.4
9. 一個幾何體的三視圖如圖所示,其中正視圖是正三角形,則幾何體
的外接球的表面積為( )
A. B. C. D.
10.偶函數(shù)滿足,且在時, , ,則函數(shù)與圖象交點的個數(shù)是( )
A.1 B.2 C.3 D.4
11. 已知點P是雙曲線 左支
4、上一點,是雙曲線的左右兩個焦點,且,線段的垂直平分線恰好是該雙曲線的一條漸近線,則離心率為
A B C D
12.如圖,在長方形ABCD中,AB=,BC=1,E為線段DC上一動點,現(xiàn)將AED沿AE折起,使點D在面ABC上的射影K在直線AE上,當(dāng)E從D運(yùn)動到C,則K所形成軌跡的長度為( )
第12題
A. B. C. D.
二、填空題(本題共4個小題,每小題5分,共20分. 把每小題的答案填在答題紙的相應(yīng)位置)
13.設(shè)
5、變量x,y滿足約束條件,則目標(biāo)函數(shù)z=2x+3y+1的最大值為
14. 已知函數(shù), 則
15. 設(shè)的展開式的各項系數(shù)和為,二項式系數(shù)和為,若,則展開式中的系數(shù)為
16. 數(shù)列{an}滿足a1=1,且對任意的正整數(shù)m,n都有am+n=am+an+mn,則=
三、解答題:本題共6小題,共70分.解答應(yīng)寫出文字說明,證明過程或演算步驟.
17. (本小題滿分12分) 己知函數(shù),
(1) 當(dāng)時,求函數(shù)的最小值和最大值;
(2) 設(shè)ABC的內(nèi)角A,B,C的對應(yīng)邊分別為、、,且,f(C) =2,若向量與向量共線,求,的值.
18.(本小題滿
6、分12分)為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:已知在全部人中隨機(jī)抽取人,抽到喜愛打籃球的學(xué)生的概率為.
(Ⅰ)請將上面的列聯(lián)表補(bǔ)充完整(不用寫計算過程);
并求出:有多大把握認(rèn)為喜愛打籃球與性別有關(guān),說明你的理由;
(Ⅱ)若從女生中隨機(jī)抽取人調(diào)查,其中喜愛打籃球的人數(shù)為,求分布列與期望.下面的臨界值表供參考:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式:,其中)
7、
19. (本小題滿分12分)如圖,已知長方形中,,為的中點.將沿折起,使得平面平面.
A
(Ⅰ)求證:;
(Ⅱ)若點是線段上的一動點,問點E在何位置時,二面角的余弦值為.
20.(本小題滿分12分)已知橢圓的離心率為,橢圓的短軸端點與雙曲線的焦點重合,過點且不垂直于軸的直線與橢圓相交于兩點。(1)求橢圓的方程; (2)求的取值范圍。
21. (本小題滿分12分)已知函數(shù)
(Ⅰ)求證:必有兩個極值點α和β,一個是極大值點,—個是極小值點;
(Ⅱ)設(shè)的極小值點為α,極大值點為β,,求a、b的值;
(Ⅲ)在(Ⅱ)的條件下,設(shè),若對于任意實數(shù)x,恒成
8、立,求實數(shù)m的取值范圍。
四、選做題(本小題滿分10分.請考生在22、23、24三題中任選一題作答,如果多做,則按所做的第一題記分.作答時,在答題卡上把所選題目對應(yīng)的標(biāo)號涂黑)
22、(滿分10分)選修4-1:幾何證明選講
如圖,已知△的兩條角平分線AD和CE相交于H,
,F(xiàn)在上,且.
(1) 證明:B,D,H,E四點共圓;
(2) 證明:平分.
23.選修4-4:坐標(biāo)系與參數(shù)方程
設(shè)圓的極坐標(biāo)方程為,以極點為直角坐標(biāo)系的原點,極軸為軸正半軸,兩坐標(biāo)系長度單位一致,建立平面直角坐標(biāo)系.過圓上的一點作垂直于軸的直線,設(shè)與軸交于點,向量.
(Ⅰ)求動點的軌跡方程;
(Ⅱ)
9、設(shè)點 ,求的最小值.
24.選修4-5:不等式選講
已知. (Ⅰ)解不等式;
(Ⅱ)對于任意的,不等式恒成立,求的取值范圍
三模理科數(shù)學(xué)答案
一. 選擇題
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
C
B
B
D
A
C
C
D
B
D
D
二.填空題
13. 10 14. 15.150 16.
三.解答題
17. 解:
∵,∴,
∴,從而
則的最小值是,最大值是2
(2),則,
∵,∴, …8分 ∴,解得
∵向量與向量共線,∴,即
10、 ①
由余弦定理得,,即 ?、?
由①②解得.
18
解:(1)列聯(lián)表補(bǔ)充如下:
喜愛打籃球
不喜愛打籃球
合計
男生
20
5
25
女生
10
15
25
合計
30
20
50
(2)∵K2=≈8.333>7.879
∴在犯錯誤的概率不超過0.005的前提下,認(rèn)為喜愛打籃球與性別有關(guān).
(3)喜愛打籃球的女生人數(shù)ξ的可能取值為0,1,2.
其概率分別為P(ξ=0)=,P(ξ=1)=,P(ξ=2)=
故ξ的分布列為:
ξ
0
1
2
P
ξ的期望值為:Eξ=0×+1×+2×=
11、19. 解:(Ⅰ)證明:連接BM,則AM=BM=,所以
又因為面平面,
所以,
由(I)可知,平面ADM的法向量
設(shè)平面ABCM的法向量,
所以,
二面角的余弦值為
得,,即:E為DB的中點。
20. 1)由題意知,
。又雙曲線的焦點坐標(biāo)為,,
橢圓的方程為。
(2)若直線的傾斜角為,則,
當(dāng)直線的傾斜角不為時,直線可設(shè)為,
,由
設(shè),,
,,綜上所述:范圍為
21.
(Ⅰ)
令
有兩實根不妨記為
極小
極大
所以,有
12、兩個極值點 ,一個極大值點一個極小值點
(Ⅱ),由韋達(dá)定理得
,所以
(Ⅲ)因為,所以
又因為當(dāng)時,不等式恒成立且為偶函數(shù)
不妨設(shè)
,
當(dāng)時,,,所以在上單調(diào)遞增,所以
在上單調(diào)遞增, ,所以當(dāng)時成立………10分
當(dāng)時得
當(dāng)時所以在上單調(diào)遞減,所以
在上單調(diào)遞減,,與條件矛盾,同理時亦如此
綜上
22.分析:此題考查平面幾何知識,如四點共圓的充要條件,角平分線的性質(zhì)等.
證明:(1)在△ABC中,因為∠B=60°,
所以∠BAC+∠BCA=120°.因為AD,CE是角平分線,所以∠HAC+
13、∠HCA=60°.故∠AHC=120°.
于是∠EHD=∠AHC=120°,因為∠EBD+∠EHD=180°,所以B,D,H,E四點共圓.
(2)連結(jié)BH,則BH為∠ABC的平分線,得∠HBD=30°.由(1)知B,D,H,E四點共圓,
所以∠CED=∠HBD=30°.又∠AHE=∠EBD=60°,由已知可得EF⊥AD,
可得∠CEF=30°.所以CE平分∠DEF.
23、解:(1)由已知得N是坐標(biāo)(m,0)設(shè)Q
點M在圓P=2上 由P=2得
∴
Q是軌跡方程為 ………………………………………………5分
(Ⅱ)Q
14、點的參數(shù)方程為
的最小值為………………………………12分
24、解:(I)
或
解得 或
∴不等式解為 (-1,+)………………………………5分
(II)
設(shè)則
在(-3,0]上單調(diào)遞減 2
在(2,3)上 單調(diào)遞增 2
∴在(-3,3)上 2
故時 不等式在(-3,3)上恒成立………………10分