《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題8 選修專題 第二講 極坐標(biāo)與參數(shù)方程 文》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題8 選修專題 第二講 極坐標(biāo)與參數(shù)方程 文(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題8 選修專題 第二講 極坐標(biāo)與參數(shù)方程 文
從歷年高考題全國卷可知,極坐標(biāo)與參數(shù)方程在選考題中相對容易,選此題同學(xué)較多,且重點(diǎn)考查參數(shù)方程與普通方程互化,極坐標(biāo)與普通坐標(biāo)的互化,另重點(diǎn)考幾類曲線的參數(shù)方程與極坐標(biāo)方程,應(yīng)爭取拿滿分!
1.曲線的極坐標(biāo)方程.
(1)極坐標(biāo)系:一般地,在平面上取一個定點(diǎn)O,自點(diǎn)O引一條射線Ox,同時確定一個長度單位和計算角度的正方向(通常取逆時針方向?yàn)檎较?,這樣就建立了一個極坐標(biāo)系.其中,點(diǎn)O稱為極點(diǎn),射線Ox稱為極軸.
(2)極坐標(biāo)(ρ,θ)的含義:設(shè)M是平面上任一點(diǎn),ρ表示OM的長
2、度,θ表示以射線Ox為始邊,射線OM為終邊所成的角.那么,有序數(shù)對(ρ,θ)稱為點(diǎn)M的極坐標(biāo).顯然,每一個有序?qū)崝?shù)對(ρ,θ),決定一個點(diǎn)的位置.其中ρ稱為點(diǎn)M的極徑,θ稱為點(diǎn)M的極角.
極坐標(biāo)系和直角坐標(biāo)系的最大區(qū)別在于:在直角坐標(biāo)系中,平面上的點(diǎn)與有序數(shù)對之間的對應(yīng)關(guān)系是一一對應(yīng)的,而在極坐標(biāo)系中,對于給定的有序數(shù)對(ρ,θ),可以確定平面上的一點(diǎn),但是平面內(nèi)的一點(diǎn)的極坐標(biāo)卻不是唯一的.
(3)曲線的極坐標(biāo)方程:一般地,在極坐標(biāo)系中,如果平面曲線C上的任意一點(diǎn)的極坐標(biāo)滿足方程f(ρ,θ)=0,并且坐標(biāo)適合方程f(ρ,θ)=0的點(diǎn)都在曲線C上,那么方程f(ρ,θ)=0叫做曲線C的極坐標(biāo)方
3、程.
幾類曲線的極坐標(biāo)方程及與直角坐標(biāo)的互化
2.直線的極坐標(biāo)方程.
(1)過極點(diǎn)且與極軸成φ0角的直線方程是θ=φ0和θ=π-φ0,如下圖所示.
(2)與極軸垂直且與極軸交于點(diǎn)(a,0)的直線的極坐標(biāo)方程是ρcos θ=a,如下圖所示.
(3)與極軸平行且在x軸的上方,與x軸的距離為a的直線的極坐標(biāo)方程為ρsin θ=a,如下圖所示.
3.圓的極坐標(biāo)方程.
(1)以極點(diǎn)為圓心,半徑為r的圓的方程為ρ=r,如圖1所示.
(2)圓心在極軸上且過極點(diǎn),半徑為r的圓的方程為ρ=2rcos_θ,如圖2所示.
(3)圓心在過極點(diǎn)且與極軸成的射線上,過極點(diǎn)且半徑為r的圓的方
4、程為ρ=2rsin_θ,如圖3所示.
4.極坐標(biāo)與直角坐標(biāo)的互化.
若極點(diǎn)在原點(diǎn)且極軸為x軸的正半軸,則平面內(nèi)任意一點(diǎn)M的極坐標(biāo)M(ρ,θ)化為平面直角坐標(biāo)M(x,y)的公式如下:
或者ρ=,tan θ=,
其中要結(jié)合點(diǎn)所在的象限確定角θ的值.
參數(shù)方程的定義及幾類曲線的參數(shù)方程
1.曲線的參數(shù)方程的定義.
在平面直角坐標(biāo)系中,如果曲線上任意一點(diǎn)的坐標(biāo)x,y都是某個變數(shù)t的函數(shù),即并且對于t的每一個允許值,由方程組所確定的點(diǎn)M(x,y)都在這條曲線上,那么方程組就叫做這條曲線的參數(shù)方程,聯(lián)系x,y之間關(guān)系的變數(shù)t叫做參變數(shù),簡稱參數(shù).
2.常見曲線的參數(shù)方程.
(1)過
5、定點(diǎn)P(x0,y0),傾斜角為α的直線:
(t為參數(shù)),
其中參數(shù)t是以定點(diǎn)P(x0,y0)為起點(diǎn),點(diǎn)M(x,y)為終點(diǎn)的有向線段PM的數(shù)量,又稱為點(diǎn)P與點(diǎn)M間的有向距離.
根據(jù)t的幾何意義,有以下結(jié)論:
①設(shè)A,B是直線上任意兩點(diǎn),它們對應(yīng)的參數(shù)分別為tA和tB,則|AB|=|tB-tA|=;
②線段AB的中點(diǎn)所對應(yīng)的參數(shù)值等于.
(2)中心在P(x0,y0),半徑等于r的圓:
(θ為參數(shù)).
(3)中心在原點(diǎn),焦點(diǎn)在x軸(或y軸)上的橢圓:
(θ為參數(shù)).
中心在點(diǎn)P(x0,y0),焦點(diǎn)在平行于x軸的直線上的橢圓的參數(shù)方程為(α為參數(shù)).
(4)中心在原點(diǎn),焦點(diǎn)在x軸
6、(或y軸)上的雙曲線:
(θ為參數(shù)).
(5)頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上的拋物線:
(t為參數(shù),p>0)
注:sec θ=.
3.參數(shù)方程化為普通方程.
由參數(shù)方程化為普通方程就是要消去參數(shù),消參數(shù)時常常采用代入消元法、加減消元法、乘除消元法、三角代換法,消參數(shù)時要注意參數(shù)的取值范圍對x,y的限制.
1.已知點(diǎn)A的極坐標(biāo)為,則點(diǎn)A的直角坐標(biāo)是(2,-2).
2.把點(diǎn)P的直角坐標(biāo)(,-)化為極坐標(biāo),結(jié)果為.
3.曲線的極坐標(biāo)方程ρ=4sin θ化為直角坐標(biāo)方程為x2+(y-2)2=4.
4.以極坐標(biāo)系中的點(diǎn)為圓心、1為半徑的圓的極坐標(biāo)方程是ρ=2cos.
5.在平面直角坐標(biāo)系xOy中,若直線l:(t為參數(shù))過橢圓C:(θ為參數(shù))的右頂點(diǎn),則常數(shù)a的值為________.
解析:由直線l:得y=x-a.由橢圓C:得==1.所以橢圓C的右頂點(diǎn)為(3,0).因?yàn)橹本€l過橢圓的右頂點(diǎn),所以0=3-a,即a=3.
答案:3