2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第10章 計數(shù)原理、概率、隨機(jī)變量及其分布 第4節(jié) 離散型隨機(jī)變量及其分布列教學(xué)案 理(含解析)新人教A版

上傳人:彩*** 文檔編號:104871788 上傳時間:2022-06-11 格式:DOC 頁數(shù):7 大?。?.50MB
收藏 版權(quán)申訴 舉報 下載
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第10章 計數(shù)原理、概率、隨機(jī)變量及其分布 第4節(jié) 離散型隨機(jī)變量及其分布列教學(xué)案 理(含解析)新人教A版_第1頁
第1頁 / 共7頁
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第10章 計數(shù)原理、概率、隨機(jī)變量及其分布 第4節(jié) 離散型隨機(jī)變量及其分布列教學(xué)案 理(含解析)新人教A版_第2頁
第2頁 / 共7頁
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第10章 計數(shù)原理、概率、隨機(jī)變量及其分布 第4節(jié) 離散型隨機(jī)變量及其分布列教學(xué)案 理(含解析)新人教A版_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

18 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第10章 計數(shù)原理、概率、隨機(jī)變量及其分布 第4節(jié) 離散型隨機(jī)變量及其分布列教學(xué)案 理(含解析)新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第10章 計數(shù)原理、概率、隨機(jī)變量及其分布 第4節(jié) 離散型隨機(jī)變量及其分布列教學(xué)案 理(含解析)新人教A版(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第四節(jié) 離散型隨機(jī)變量及其分布列 [考綱傳真] 1.理解取有限個值的離散型隨機(jī)變量及其分布列的概念,了解分布列對于刻畫隨機(jī)現(xiàn)象的重要性.2.理解超幾何分布及其導(dǎo)出過程,并能進(jìn)行簡單的應(yīng)用. 1.隨機(jī)變量的有關(guān)概念 (1)隨機(jī)變量:隨著試驗結(jié)果變化而變化的變量,常用字母X,Y,ξ,η,…表示. (2)離散型隨機(jī)變量:所有取值可以一一列出的隨機(jī)變量. 2.離散型隨機(jī)變量分布列的概念及性質(zhì) (1)概念:若離散型隨機(jī)變量X可能取的不同值為x1,x2,…,xi,…,xn,X取每一個值xi(i=1,2,…,n)的概率P(X=xi)=pi,以表格的形式表示如下: X x1 x2 …

2、 xi … xn P p1 p2 … pi … pn 此表稱為離散型隨機(jī)變量X的概率分布列,簡稱為X的分布列.有時也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列. (2)分布列的性質(zhì) ①pi≥0,i=1,2,3,…,n; ②pi=1. 3.常見離散型隨機(jī)變量的分布列 (1)兩點分布:若隨機(jī)變量X服從兩點分布,則其分布列為 X 0 1 P 1-p p ,其中p=P(X=1)稱為成功概率. (2)超幾何分布:在含有M件次品的N件產(chǎn)品中,任取n件,其中恰有X件次品,則P(X=k)=,k=0,1,2,…,m,其中m=min{M,n},且n≤

3、N,M≤N,n,M,N∈N*,稱隨機(jī)變量X服從超幾何分布. X 0 1 … m P … [基礎(chǔ)自測] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“×”) (1)離散型隨機(jī)變量的分布列中,各個概率之和可以小于1.(  ) (2)離散型隨機(jī)變量的各個可能值表示的事件是彼此互斥的.(  ) (3)如果隨機(jī)變量X的分布列由下表給出,則它服從兩點分布.(  ) X 2 5 P 0.3 0.7 (4)從4名男演員和3名女演員中選出4人,其中女演員的人數(shù)X服從超幾何分布.(  ) [答案] (1)× (2)√ (3)× (4)√ 2.

4、投擲甲、乙兩顆骰子,所得點數(shù)之和為X,那么X=4表示的事件是(  ) A.一顆是3點,一顆是1點 B.兩顆都是2點 C.甲是3點,乙是1點或甲是1點,乙是3點或兩顆都是2點 D.以上答案都不對 C [甲是3點,乙是1點與甲是1點,乙是3點是試驗的兩個不同結(jié)果,故選C.] 3.設(shè)隨機(jī)變量X的分布列如下: X 1 2 3 4 5 P p 則p為(  ) A.     B. C. D. C [由分布列的性質(zhì)知,++++p=1,∴p=1-=.] 4.設(shè)隨機(jī)變量X等可能取值1,2,3,…,n,如果P(X<4)=0.3,那么n=________.

5、 10 [由于隨機(jī)變量X等可能取1,2,3,…,n, ∴取到每個數(shù)的概率均為, ∴P(X<4)=P(X=1)+P(X=2)+P(X=3)==0.3,∴n=10.] 5.在含有3件次品的10件產(chǎn)品中任取4件,則取到次品數(shù)X的分布列為________. P(X=k)=,k=0,1,2,3 [由題意知,X服從超幾何分布,其中N=10,M=3,n=4,所以分布列為P(X=k)=,k=0,1,2,3.] 離散型隨機(jī)變量的分布列的性質(zhì) 1.隨機(jī)變量X的分布列如下: X -1 0 1 P a b c 其中a,b,c成等差數(shù)列,則P(|X|=1)=________.

6、  [由題意知 所以2b+b=1,則b=,因此a+c=. 所以P(|X|=1)=P(X=-1)+P(X=1)=a+c=.] 2.設(shè)隨機(jī)變量X的分布列為P=ak(k=1,2,3,4,5). (1)求a; (2)求P; (3)求P. [解] (1)由分布列的性質(zhì),得P+P+P+P+P(X=1)=a+2a+3a+4a+5a=1, 所以a=. (2)P=P+P+P(X=1)=3×+4×+5×=. (3)P=P+P+P=++==. [規(guī)律方法] (1)利用分布列中各概率之和為1可求參數(shù)的值,此時要注意檢驗,以保證每個概率值均為非負(fù)數(shù). (2)求隨機(jī)變量在某個范圍內(nèi)的概率時,根據(jù)分

7、布列,將所求范圍內(nèi)各隨機(jī)變量對應(yīng)的概率相加即可,其依據(jù)是互斥事件的概率加法公式. 求離散型隨機(jī)變量的分布列 【例1】 已知2件次品和3件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機(jī)檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或檢測出3件正品時檢測結(jié)束. (1)求第一次檢測出的是次品且第二次檢測出的是正品的概率; (2)已知每檢測一件產(chǎn)品需要費(fèi)用100元,設(shè)X表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費(fèi)用(單位:元),求X的分布列. [解] (1)記“第一次檢測出的是次品且第二次檢測出的是正品”為事件A,P(A)==. (2)X的可能取值為200,300,4

8、00. P(X=200)==, P(X=300)==, P(X=400)=1-P(X=200)-P(X=300) =1--==. 故X的分布列為 X 200 300 400 P [規(guī)律方法] 求離散型隨機(jī)變量分布列的步驟 (1)找出隨機(jī)變量X的所有可能取值xi(i=1,2,3,…,n); (2)求出各取值的概率P(X=xi)=pi; (3)列成表格并用分布列的性質(zhì)檢驗所求的分布列或某事件的概率是否正確. 提醒:求離散型隨機(jī)變量的分布列的關(guān)鍵是求隨機(jī)變量所有取值對應(yīng)的概率,在求解時,要注意應(yīng)用計數(shù)原理、古典概型等知識. 一個盒子里裝有7張卡片,

9、其中有紅色卡片4張,編號分別為1,2,3,4;白色卡片3張,編號分別為2,3,4.從盒子中任取4張卡片(假設(shè)取到任何一張卡片的可能性相同). (1)求取出的4張卡片中,含有編號為3的卡片的概率; (2)在取出的4張卡片中,紅色卡片編號的最大值設(shè)為X,求隨機(jī)變量X的分布列. [解] (1)由題意知,在7張卡片中,編號為3的卡片有2張,故所求概率為P=1-=1-=. (2)由題意知,X的可能取值為1,2,3,4,且 P(X=1)==,P(X=2)==, P(X=3)==,P(X=4)==. 所以隨機(jī)變量X的分布列是 X 1 2 3 4 P 超幾何分布

10、 【例2】 PM2.5是指懸浮在空氣中的空氣動力學(xué)當(dāng)量直徑小于或等于2.5微米的可入肺顆粒物.根據(jù)現(xiàn)行國家標(biāo)準(zhǔn)GB3095-2012,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo). 從某自然保護(hù)區(qū)2017年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機(jī)地抽取10天的數(shù)據(jù)作為樣本,監(jiān)測值頻數(shù)如下表所示 : PM2.5日均 值(微克/立方米) [25, 35) [35, 45) [45, 55) [55, 65) [65, 75) [75, 85] 頻數(shù) 3 1 1

11、 1 1 3 (1)從這10天的PM2.5日均值監(jiān)測數(shù)據(jù)中,隨機(jī)抽出3天,求恰有一天空氣質(zhì)量達(dá)到一級的概率; (2)從這10天的數(shù)據(jù)中任取3天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列. [解] (1)記“從10天的PM2.5日均值監(jiān)測數(shù)據(jù)中,隨機(jī)抽出3天,恰有一天空氣質(zhì)量達(dá)到一級”為事件A,則P(A)==. (2)依據(jù)條件知,ξ服從超幾何分布,其中N=10,M=3,n=3,且隨機(jī)變量ξ的可能取值為0,1,2,3. P(ξ=k)=(k=0,1,2,3). ∴P(ξ=0)==, P(ξ=1)==, P(ξ=2)==, P(ξ=3)==. 故ξ的分布列為

12、 ξ 0 1 2 3 P [規(guī)律方法] 求超幾何分布的分布列的步驟 某外語學(xué)校的一個社團(tuán)中有7名同學(xué),其中2人只會法語,2人只會英語,3人既會法語又會英語,現(xiàn)選派3人到法國的學(xué)校交流訪問.求: (1)在選派的3人中恰有2人會法語的概率; (2)在選派的3人中既會法語又會英語的人數(shù)X的分布列. [解] (1)設(shè)事件A:選派的3人中恰有2人會法語,則P(A)==. (2)依題意知,X服從超幾何分布,X的可能取值為0,1,2,3, P(X=0)==, P(X=1)==, P(X=2)==, P(X=3)==, ∴X的分布列為 X 0 1 2 3 P - 7 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!